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In this paper, the generic intersection theory for difference 
varieties is presented. Precisely, the intersection of an irre-
ducible difference variety of dimension d > 0 and order h with 
a generic difference hypersurface of order s is shown to be an 
irreducible difference variety of dimension d −1 and order h +s. 
Based on the intersection theory, the difference Chow form for 
an irreducible difference variety is defined. Furthermore, it is 
shown that the difference Chow form of an irreducible dif-
ference variety V is transformally homogeneous and has the 
same order as V .
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1. Introduction

Difference algebra founded by Ritt and Cohn aims to study algebraic difference equa-
tions in a similar way that polynomial equations are studied in algebraic geometry and 
differential equations are studied in differential algebra [3]. Therefore, the basic concepts 
of difference algebra are similar to those of differential algebra, which are based on those 
of algebraic geometry.
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The Chow form, also known as the Cayley form or the Cayley–Chow form, is a basic 
concept in algebraic geometry [7,8] and has important applications in transcendental 
number theory [16,17], elimination theory [1,4], and algebraic computational complex-
ity [10].

Recently, the theory of differential Chow forms in both affine and projective differential 
algebraic geometry was developed [6,13]. It is shown that most of the basic properties of 
algebraic Chow form can be extended to its differential counterpart [6]. Closely related to
differential Chow form, a theory of differential resultant and sparse differential resultant 
was also given [6,12,14]. Furthermore, a theory of sparse difference resultants has been 
developed [15]. So it is worthwhile to generalize the differential Chow form to its difference 
counterpart.

In this paper, we will study the difference Chow form for irreducible difference va-
rieties. We first consider the dimension and order for the intersection of an irreducible 
difference variety by a generic difference hypersurface. Precisely, the intersection of an 
irreducible difference variety of dimension d > 0 and order h with a generic difference 
hypersurface of order s is shown to be an irreducible difference variety of dimension d −1
and order h + s. Based on the intersection theory, the concept of difference Chow form 
for an irreducible difference variety is defined. Furthermore, it is shown that the differ-
ence Chow form of an irreducible difference variety V is transformally homogeneous and 
has the same order as V . The theory of characteristic set for reflexive prime difference 
ideals [5,2] plays a key role in the development of the theory of the difference Chow 
form.

Although both the generic intersection theorem and the basic properties of differ-
ence Chow form are similar to their differential counterparts given in [6], some of them 
are quite different in terms of descriptions and proofs. Firstly, the proof of the generic 
intersection theorem is quite different from its differential counterpart. In differential 
case, Kolchin’s theory on primitive elements plays a crucial role in the proof of [6, The-
orem 3.13]. However, the difference analogue of such theory is too weak to be applied 
here. Secondly, the definition of the difference Chow form is more subtle than the dif-
ferential case and the correspondence between irreducible difference varieties and the 
difference Chow forms may not be one-to-one as illustrated in Example 6.4. The main 
reason lies in the fact that extensions of difference fields are much more complicated than 
the differential case. Finally, the theory of difference Chow form is much more incom-
plete than the differential Chow form. For instance, it lacks Poisson-type factorization 
formula and whether a theory of difference Chow variety can be developed is still an 
open question/problem.

The rest of the paper is organized as follows. In Section 2, we present the basic no-
tation and preliminary results in difference algebra. We devote Section 3 to a discussion 
of order and dimension for a reflexive prime difference ideal in terms of its character-
istic sets. Generic linear transformations as well as a generic intersection theorem on 
difference varieties with generic hyperplanes are then given in Section 4. And in Sec-
tion 5, the generic intersection theory for generic difference polynomials is established. 
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The difference Chow form for an irreducible difference variety is defined and its basic 
properties are given in Section 6. In Section 7, we present the conclusion and propose 
several problems for further study.

2. Preliminaries

In this section, some notions and preliminary results in difference algebra will be given. 
For more details about difference algebra, please refer to [3,19].

2.1. Difference polynomial algebra

A difference field F is a field with a third unitary operation σ satisfying that for 
any a, b ∈ F , σ(a + b) = σ(a) + σ(b), σ(ab) = σ(a)σ(b) and σ(a) = 0 iff a = 0. Here, 
σ is called the transforming operator of F . If a ∈ F , σ(a) is called the transform of 
a and denoted by a(1). More generally, for n ∈ Z+, σn(a) = σn−1(σ(a)) is called the 
n-th transform of a and denoted by a(n). And by convention, a(0) = a. For ease of 
notation, set a[n] = {a, a(1), . . . , a(n)} and a[∞] = {a(i) | i ≥ 0}. If σ−1(a) is defined for 
all a ∈ F , we say that F is inversive. A typical example of difference field is (Q(x), σ)
with σ(f(x)) = f(x + 1).

Let S be a subset of a difference extension field G of F . We will denote respectively 
by F [S], F(S), F{S} and F〈S〉 the smallest subring, the smallest subfield, the smallest 
difference subring and the smallest difference subfield of G containing both F and S. If 
we denote Θ(S) = {σka | k ≥ 0, a ∈ S}, then F{S} = F [Θ(S)] and F〈S〉 = F(Θ(S)).

A subset Σ of a difference extension field G of F is said to be transformally dependent
over F if the set Θ(Σ) is algebraically dependent over F , and otherwise, it is said to be 
transformally independent over F , or to be a family of difference indeterminates over F . 
In the case Σ consists of only one element α, we say that α is transformally algebraic 
or transformally transcendental over F respectively. The maximal subset Ω of G which 
are transformally independent over F is said to be a transformal transcendence basis 
of G over F . We use σ.tr.degG/F to denote the transformal transcendence degree of G
over F , which is the cardinal number of Ω. Regarding F and G as ordinary algebraic 
fields, we denote the algebraic transcendence degree of G over F by tr.deg G/F .

A homomorphism (resp. isomorphism) ϕ from a difference ring (R, σ) to a difference 
ring (S, σ1) is a difference homomorphism (resp. difference isomorphism) if ϕ ◦σ = σ1◦ϕ. 
If R0 is a common difference subring of R and S and the homomorphism ϕ leaves every 
element of R0 invariant, ϕ is said to be a difference homomorphism over R0.

Let K be the underlying field of F , that is, an algebraic field consisting of the same 
elements as F . Let K(x1, x2, . . .) be an extension field of K such that the xi form an 
algebraically independent set over K, and K∗ be the algebraic closure of K(x1, x2, . . .). 
Set U to be the set consisting of all difference fields defined over subfields of K∗ which 
are difference extension fields of F . Then U is called the universal system of difference 
extension fields of F .
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Now suppose Y = {y1, . . . , yn} is a set of difference indeterminates over F . The 
elements of F{Y} = F [y(k)

j : j = 1, . . . , n; k ∈ N0] are called difference polynomials
over F , and F{Y} itself is called the difference polynomial ring over F . A difference 
polynomial ideal I in F{Y} is an algebraic ideal which is closed under transforming, i.e. 
σ(I) ⊂ I. A difference ideal I is called reflexive if a(1) ∈ I implies that a ∈ I. And a 
difference ideal I is prime if for any a, b ∈ F{Y}, ab ∈ I implies that a ∈ I or b ∈ I. For 
convenience, a prime difference ideal is assumed not to be the unit ideal in this paper. 
Given a set S of difference polynomials, we use [S]F{Y} to denote the difference ideal 
generated by S in F{Y}.

An n-tuple over F is an n-tuple of the form a = (a1, . . . , an) where the ai are selected 
from some difference extension field of F . For a difference polynomial f ∈ F{y1, . . . , yn}, 
a is called a difference solution of f if when substituting y(j)

i by a(j)
i in f , the result is 0, 

denoted by f(a) = 0.
An n-tuple η is called a generic zero of a difference ideal I ⊂ F{Y} if for any poly-

nomial P ∈ F{Y}, P (η) = 0 iff P ∈ I. It is well known that

Lemma 2.1. (See [3, p. 77].) A difference ideal possesses a generic zero if and only if it 
is a reflexive prime difference ideal other than the unit ideal.

For a set of difference polynomials S ⊂ F{Y}, the difference variety defined by S

is the set of all difference solutions of S with coordinates selected from a field of U , 
denoted by V(S). If we use a = (a1, . . . , an) ∈ U n to mean that there exists G ∈ U such 
that ai ∈ G for each i, then V(S) = {a ∈ U n | f(a) = 0, ∀f ∈ S}. A difference variety 
is called irreducible if it is not the union of two proper subvarieties. For a difference 
variety V , I(V ) = {f ∈ F{Y} | f(a) = 0, ∀a ∈ S}. And V is irreducible if and only if 
I(V ) is a reflexive prime difference ideal. In this case, a generic zero of I(V ) is called a 
generic point of V .

Given two n-tuples a = (a1, . . . , an) and ā = (ā1, . . . , ̄an) over F , ā is called a special-
ization of a over F , or a specializes to ā, if for every difference polynomial P ∈ F{Y}, 
P (a) = 0 implies that P (ā) = 0. A point η ∈ U n is said to be free from the pure 
transformal transcendental extension field F〈U〉 of F if U is transformally independent 
over F〈η〉. The following property about difference specialization will be needed in this 
paper.

Lemma 2.2. Let Pi(U, Y) ∈ F{Y, U} (i = 1, . . . , m) where U = (u1, . . . , ur) and Y =
(y1, . . . , yn) are sets of difference indeterminates. Suppose Y = (ȳ1, . . . , ȳn) is an n-tuple 
over F that is free from F〈U〉. If Pi(U,Y) (i = 1, . . . , m) are transformally dependent 
over F〈U〉, then for any difference specialization U to U ⊂ F , Pi(U,Y) (i = 1, . . . , m) 
are transformally dependent over F .

Proof. It suffices to show the case r = 1. Denote u = u1. Since Pi(u,Y) (i = 1, . . . , m) 
are transformally dependent over F〈u〉, there exist natural numbers s and l such that 
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P
(k)
i (u,Y) (k ≤ s) are algebraically dependent over F(u(k) | k ≤ s +l). When u specializes 

to ū ∈ F , u(k) (k ≥ 0) correspondingly algebraically specialized to ū(k) ∈ F . By [20, 
p. 161], P(k)

i (ū,Y) (k ≤ s) are algebraically dependent over F . Thus, Pi(ū,Y) (i =
1, . . . , m) are transformally dependent over F . �
2.2. Characteristic set for a difference polynomial system

A ranking R is a total order over Θ(Y) = {σkyi | 1 ≤ i ≤ n, k ≥ 0} satisfying

1) σ(α) > α for all α ∈ Θ(Y) and
2) α1 > α2 ⇒ σ(α1) > σ(α2) for arbitrary α1, α2 ∈ Θ(Y).

Below are two important kinds of rankings:

1) Elimination ranking: yi > yj ⇒ σkyi > σlyj for any k, l ≥ 0.
2) Orderly ranking: k > l ⇒ σkyi > σlyj , for any i, j ∈ {1, . . . , n}.

Let f be a difference polynomial in F{Y} endowed with a ranking R. The leader
of f is the greatest y(k)

j appearing effectively in f , denoted by ld(f). In this case, we 
call yj the leading variable of f , denoted by lvar(f). The leading coefficient of f as a 
univariate polynomial in ld(f) is called the initial of f and denoted by If . The order of f
w.r.t. yi, denoted by ord(f, yi), is defined as the greatest number k such that y(k)

i appears 
effectively in f . The least order of f w.r.t. yi is Lord(f, yi) = min{k | deg(f, y(k)

i ) > 0}
and the effective order of f w.r.t. yi is Eord(f, yi) = ord(f, yi) − Lord(f, yi). And if yi
does not appear in f , then set ord(f, yi) = −∞ and Eord(f, yi) = −∞. The order of f
is defined as ord(f) = maxi ord(f, yi).

Let f and g be two difference polynomials in F{Y}. We say g is higher than f , denoted 
by g > f , if 1) ld(g) > ld(f), or 2) ld(g) = ld(f) = y

(k)
j and deg(g, y(k)

j ) > deg(f, y(k)
j ). 

Suppose ld(f) = y
(k)
j . Then g is said to be reduced w.r.t. f if deg(g, y(k+l)

j ) < deg(f, y(k)
j )

for each l ≥ 0. A finite sequence of nonzero difference polynomials A = A1, . . . , Am is 
called an ascending chain if 1) m = 1 and A1 �= 0 or 2) m > 1, Aj > Ai and Aj is 
reduced w.r.t. Ai for 1 ≤ i < j ≤ m.

Definition 2.3. Let A be an ascending chain. Rewrite A in the following form

A =

⎧⎪⎨⎪⎩
A11, . . . , A1l1

· · ·
Ap1, . . . , Aplp

(1)

where lvar(Aij) = yci for j = 1, . . . , li, ci1 �= ci2 for i1 �= i2, and ord(Aij , yci) <
ord(Aik, yci) for j < k. Then the order of A is defined as 

∑p
i=1 ord(Ai1, yci), and the 

subset Y\{yc1 , . . . , ycp} is called the parametric set of A.
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Set oij = ord(Aij , yci). For h1, . . . , hn ≥ 0, following [5, Section 3.2], we obtain the 
following polynomial sequence

A(h1,...,hn) =

⎧⎪⎪⎨⎪⎪⎩
A11, . . . , A

(o12−o11−1)
11 , A12, . . . , A1l1 , . . . , A

(hc1−o1l1 )
1l1

· · ·
Ap1, . . . , A

(op2−op1−1)
p1 , Ap2, . . . , Aplp , . . . , A

(hcp−oplp )
plp

where hci ≥ max{hci , oili + 1} is an integer depending on A and the algorithm. For an 
ascending chain A and a difference polynomial f , let Af = A(ord(f,y1),...,ord(f,yn)). Then 
the difference remainder of f w.r.t. A is defined as the algebraic pseudo-remainder of f
w.r.t. Af , that is, prem(f, A) = aprem(f, Af ), which is reduced w.r.t. A.

Let A be an ascending chain. Denote IA to be the minimal multiplicative set containing 
the initials of elements of A and their transforms. The saturation ideal of A is defined 
as

sat(A) = [A] : IA =
{
p | ∃h ∈ IA, s.t. hp ∈ [A]

}
.

The algebraic saturation ideal of A is asat(A) = (A) : IA, where IA is the minimal 
multiplicative set containing the initials of elements of A.

An ascending chain C contained in a difference polynomial set S is said to be a 
characteristic set of S, if S does not contain any nonzero element reduced w.r.t. C. If 
C is a characteristic set of a difference ideal I, then C reduces each element of I to 
zero. Moreover, if I is a reflexive prime difference ideal, then C reduces to zero only the 
elements of I and we have I = sat(C).

Remark 2.4. A set of difference polynomials A = {A1, . . . , Am} is called a difference 
triangular set if the following conditions are satisfied:

1) the leaders of Ai are distinct,
2) no initial of an element of A is reduced to zero by A.

Similar properties to ascending chains can be developed for difference triangular sets. 
We also can define a characteristic set of a difference ideal I to be a difference triangular 
set A contained in I such that I does not contain any nonzero element reduced w.r.t. A. 
So we will not distinguish ascending chains and difference triangular sets in this paper.

3. Dimension and order of a reflexive prime difference ideal

Let I be a reflexive prime difference ideal in F{Y} with a generic zero (η1, . . . , ηn). 
The dimension of I is defined as σ.tr.degF〈η1, . . . , ηn〉/F and codim(I) = n − dim(I). 
A subset U of Y is called a transformal independent set modulo I if I ∩ F{U} =
{0}. A maximal transformal independent set modulo I is called a parametric set of I. 
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Obviously, a necessary and sufficient condition for a transformal independent set U
becoming a parametric set of I is that |U| = dim(I). Let U = {yi1 , . . . , yip} be a 
parametric set of I, the relative order of I w.r.t. to U, denoted by ordU(I), is defined as 
tr.degF〈η1, . . . , ηn〉/F〈ηi1 , . . . , ηip〉.

Definition 3.1. (See [11, Theorem 6.4.1].) Let I be a reflexive prime difference ideal 
in F{Y} with a generic zero (η1, . . . , ηn). Then there exists a numerical polynomial 
ϕI(t) such that, for all sufficiently large t ∈ N, ϕI(t) = tr.degF(η[t]

1 , . . . , η[t]
n )/F . The 

polynomial ϕI(t) is called the difference dimension polynomial of I.

Lemma 3.2. (See [11, Theorem 6.4.1].) Let I be a reflexive prime difference ideal with 
dim(I) = d. Then there exists a nonnegative integer h such that ϕI(t) = d(t +1) +h. We 
define h to be the order of I and denote ord(I) = h. Moreover, if A is a characteristic 
set of I w.r.t. some fixed orderly ranking, then ord(A) = ord(I).

In [2], Cohn showed that a characteristic set of I w.r.t. an arbitrary elimination rank-
ing can give the information of both dimension and relative order of I. More precisely, if 
A is a characteristic set of I under some elimination ranking and U is the parametric set 
of A, then dim(I) = |U| and ordU I = ord(A). And elimination ranking plays a crucial 
role in that proof. In the following, we will show that no matter which ranking we work 
with, the previous result is still true. As an application, we also give the relation between 
the order and the relative orders of a reflexive prime difference ideal. Before proposing 
the main result, we first give the following lemmas.

Lemma 3.3. Let I be a reflexive prime difference ideal in F{Y} and C be a characteristic 
set of I. Suppose U is the parametric set of C and set Y = Y\U. Then C is also a 
characteristic set of I = [I] ⊂ F〈U〉{Y} w.r.t. the ranking induced by the original one 
on Y and ordU(I) = ord(I).

Proof. Since each nonzero f ∈ F{U} is reduced w.r.t. C, I ∩ F{U} = {0}. Hence, 
I �= [1]. For each f ∈ I, there exists h ∈ F{U} such that hf ∈ F{Y} ∩ I = I. If f is 
reduced w.r.t. C, then hf ∈ I is also reduced w.r.t. C. So hf = 0 and f = 0 follows. 
Thus, C is a characteristic set of I. Suppose |Y| = p and (U, η1, . . . , ηp) is a generic 
zero of I. Then (η1, . . . , ηp) is a generic zero of I. By the definition of relative order, 
ordU(I) = ord(I). �
Lemma 3.4. Let I be a reflexive prime difference ideal in F{Y} and C be a characteristic 
set of I w.r.t. an arbitrary ranking which has empty parametric set. Then for sufficiently 
large r ∈ N, the algebraic dimension of sat(C) ∩F [ΘrY] is equal to the order of C, where 
ΘrY = {y(k)

j | k ≤ r; j = 1, . . . , n}.

Proof. Let r0 = max{ord(A) | A ∈ C} + 1 and take r ≥ r0. Denote Cr = C(r,...,r). 
Firstly, since for any f ∈ sat(C) ∩F [ΘrY], prem(f, C) = aprem(f, Cr) = 0, it follows that 
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sat(C) ∩F [ΘrY] = asat(C(r)) ∩F [ΘrY]. By [9, Theorem 3.2], the set of non-leaders of C(r)
is a parametric set of asat(C(r)). And by [5, Lemma 3.3], the set of non-leaders of C(r) is 
contained in ΘrY and its cardinal is equal to ord(C). Thus dim(asat(C(r)) ∩ F [ΘrY]) =
ord(C). Hence, dim(sat(C) ∩ F [ΘrY]) = ord(C). �

With the above preparations, we now give the first main result in this section, which 
is a difference analog of [18, Theorem 4.11].

Theorem 3.5. Let C be a characteristic set of a reflexive prime difference ideal I ⊂ F{Y}
endowed with an arbitrary ranking. Then the parametric set U of C is a parametric set 
of I. Its cardinal gives the difference dimension of I. Furthermore, the order of I relative 
to U is equal to the order of C.

Proof. Consider I = [I] ⊂ F〈U〉{Y}, where Y = Y\U. By Lemma 3.3, C is a character-
istic set of I which has empty parametric set. By Lemma 3.4, for sufficiently large r ∈ N, 
dim(I ∩ F [ΘrY]) = ord(C). By Lemma 3.2, dim(I ∩ F [ΘrY]) = dim(I)(r + 1) + ord(I), 
hence dim(I) = 0 and ord(I) = ord(C). For each y ∈ Y, since I ∩ F〈U〉{y} �= {0}, 
I ∩ F{U, y} �= {0}. Thus U is a parametric set of I and ordU I = ord(I) = ord(C). �

Apart from the trivial ideals [0] and F{Y} itself, the simplest and also most interesting 
ideals are reflexive prime difference ideals of codimension 1. In differential algebra, for 
each prime differential ideal I of codimension 1, there exists an irreducible differential 
polynomial F such that {F} is a characteristic set of I w.r.t. any ranking. Unlike the 
differential case, here even though I is of codimension one, it may happen that there is
more than one difference polynomial in a characteristic set of I and characteristic sets 
may be distinct for different rankings. Nevertheless, the following lemma shows that a 
uniqueness property still exists for the characteristic sets of a reflexive prime difference 
ideal of codimension one under different rankings.

Lemma 3.6. (See [15, Lemma 2.6].) Let I be a reflexive prime difference ideal of codi-
mension one in F{Y}. The first element in any characteristic set of I w.r.t. any ranking, 
when taken irreducible,1 is unique up to a factor in F .

We will end this section by proposing the following theorem, which gives the relation 
between the order and the relative order of a reflexive prime difference ideal.

Theorem 3.7. Let I be a reflexive prime difference ideal in the difference polynomial ring 
F{Y}. Then the order of I is equal to the maximum of all the relative orders of I, that 
is, ord(I) = maxU ordU I, where U is a parametric set of I.

1 Since I is a reflexive prime difference ideal, the first element of a characteristic set of I w.r.t. any 
ranking can always be taken to be an irreducible polynomial. In other words, if the first element A1 of a 
given characteristic set A of I is not irreducible, A1 can be replaced by one of its specific irreducible factor.
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Proof. Let C be a characteristic set of I w.r.t. some fixed orderly ranking. Similarly to 
the proof of [6, Theorem 2.11], we can show that ordU I ≤ ord(C) for every parametric 
set U of I by using Lemma 3.2.

Set U∗ to be the parametric set of C, by Lemma 3.2 and Theorem 3.5, ord(I) =
ord(C) = ordU∗ I. Hence for each parametric set U, ordU(I) ≤ ord(I) and there exists a 
parametric set U∗ such that ordU∗(I) = ord(I). Thus, the proof is completed. �
4. Generic linear transformations and intersection with generic difference hyperplanes

In this section, we will introduce generic linear transformations and study the intersec-
tion of an irreducible difference variety with a generic difference hyperplane. Throughout 
this section, U stands for a fixed universal system of difference extension fields of F and 
recall that by (a1, . . . , an) ∈ U n, we mean that there exists G ∈ U such that ai ∈ G for 
each i.

Definition 4.1. Let U = {uij : i = 1, . . . , n; j = 1, . . . , n} ⊂ U be a transformally 
independent set over F . A generic difference linear transformation over F is a linear 
transformation T from U n to U n such that for every point α = (α1, . . . , αn)T,

T (α) =

⎛⎜⎜⎝
u11 · · · u1n
...

. . .
...

un1 · · · unn

⎞⎟⎟⎠
⎛⎜⎜⎝

α1
...
αn

⎞⎟⎟⎠ .

Obviously, T is a bijective linear transformation and we denote its inverse mapping to 
be T −1. For every difference polynomial P (Y) ∈ F{Y}, we define T (P ) = P (T −1(Y)) ∈
F〈U〉{Y}.

Lemma 4.2. If V is a difference variety over F , then T (V ) is a difference vari-
ety over F〈U〉. Furthermore, if V is irreducible, then T (V ) is also irreducible, and 
dim(V ) = dim(T (V )), ord(V ) = ord(T (V )).

Proof. Suppose V = V(f1, . . . , fm), where fi ∈ F{Y}. Claim: T (V ) = V(T (f1), . . . ,
T (fm)). For any b ∈ T (V ), there exists a ∈ V such that b = T (a), then T (fi)(b) =
fi(T −1(b)) = fi(a) = 0. Hence, b ∈ V(T (f1), . . . , T (fm)). Conversely, for any b ∈
V(T (f1), . . . , T (fm)), then T (fi)(b) = fi(T −1(b)) = 0. So T −1(b) ∈ V and b ∈ T (V ). 
Thus, T (V ) = V(T (f1), . . . , T (fm)) and T (V ) is a difference variety over F〈U〉.

Suppose V is irreducible and ξ is a generic zero of V that is free from F〈U〉. It is easy 
to show that T (ξ) is a generic zero of T (V ) over F〈U〉. Indeed, for each f ∈ F〈U〉{Y}
satisfying f(T (ξ)) = 0, T −1(f)(ξ) = 0. Since ξ is free from F〈U〉, for each a ∈ V , 
T −1(f)(a) = 0 = f(T (a)). Thus, f |T (V ) ≡ 0 and it follows that T (V ) is irreducible.
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Suppose dim(V ) = d, ord(V ) = h, then for sufficiently large t ∈ N, ϕT (V )/F〈U〉(t) =
tr.degF〈U〉(T (ξ)[t])/F〈U〉 = tr.degF〈U〉(ξ[t])/F〈U〉 = tr.degF(ξ[t])/F = d(t + 1) + h.

Hence, dim(V ) = dim(T (V )), ord(V ) = ord(T (V )). �
Definition 4.3. A generic difference hyperplane is the difference variety defined by u0 +
u1y1 + · · · + unyn = 0, where the ui ∈ U are transformally independent over F .

The following theorem gives the main result of this section, which generalizes an 
interesting theorem [8, p. 54, Theorem I] in algebraic geometry to the difference case.

Theorem 4.4. Let V be an irreducible difference variety over F with dimension d > 0
and order h. Let L : u1y1 + · · ·+unyn −u0 = 0 be a generic difference hyperplane. Then 
V ∩ L is an irreducible difference variety over F〈u0, u1, . . . , un〉 with dimension d − 1
and order h.

Proof. Consider the following generic difference linear transformation T : U n → U n

over F : ∀α = (α1, . . . , αn)T,

T (α) =

⎛⎜⎜⎜⎜⎝
u1 · · · un

v1 · · · vn
...

. . .
...

w1 · · · wn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

α1

α2
...
αn

⎞⎟⎟⎟⎟⎠ ,

where U = {ui, vj , . . . , wk} is a transformally independent set over F .
Then T (L) = y1 − u0 = 0. By Lemma 4.2, T (V ) is an irreducible difference variety 

over F〈U〉 with dim(T (V )) = d and ord(T (V )) = h. Suppose

A =

⎧⎪⎨⎪⎩
A11, . . . , A1l1

· · ·
An−d,1, . . . , An−d,ln−d

is a difference characteristic set of T (V ) w.r.t. some orderly ranking R, where lvar(Aij) =
yci for j = 1, . . . , li and ord(Aij , yci) < ord(Ail, yci) for all j < l. By interchanging the 
rows of the matrix of T when necessary, suppose y1 lies in the parametric set of A.

In each Aij , replace y1 by u0 and denote it by Bij . Set B0 = y1 − u0 and

B =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B0

B1,1, . . . , B1,l1

· · ·
Bn−d,1, . . . , Bn−d,ln−d

.

We claim that [sat(A), B0] is a reflexive prime difference ideal over F〈u0, U〉 and B is a 
characteristic set of it w.r.t. R. Then T (V ∩L) = T (V ) ∩T (L) is an irreducible difference 
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variety over F〈u0, U〉 with dimension d − 1 and order h. Since T is an inverse linear 
difference transformation, V ∩L is an irreducible difference variety over F〈u0, u1, . . . , un〉
with dimension d − 1 and order h. Thus it suffices to prove the above claim.

Suppose ζ = (u0, y2, . . . , yd, ηd+1, . . . , ηn) is a generic zero of sat(A) ⊂ F〈U〉{Y}. Let 
I(ζ) be the difference polynomial ideal in F〈U, u0〉{Y} with ζ as a generic zero. Clearly, 
[sat(A), B0] ⊂ I(ζ). Conversely, for any f ∈ I(ζ), there exists M(u0) ∈ F{u0} such that 
M(u0)f ∈ F〈U〉{u0, Y}. Then M(u0)f(ζ) = 0. Let f1 = prem(M(u0)f, y1 − u0), i.e. 
M(u0)f ≡ f1 mod [y1 − u0], then f1 ∈ F〈U〉{u0, Y} is free from y1. On the one hand, 
replace u0 by y1 in f1 and denote the obtained polynomial by f̃1, then f̃1 ∈ F〈U〉{Y}
vanishes at ζ and f̃1 − f1 ∈ [y1 − u0]. Hence f̃1 ∈ sat(A) and f1 ∈ [sat(A), B0]. Thus, 
f ∈ [sat(A), B0]. So [sat(A), B0] = I(ζ) is a reflexive prime difference ideal. On the 
other hand, let r = prem(f1, B) and r̃ be obtained by replacing u0 with y1 in r. Then 
r̃ ∈ sat(A) is reduced w.r.t. A. Thus, r̃ = 0 and r = 0 follows. That is, B reduces 
all element in I(ζ) to zero. Since B ⊂ I(ζ) = [sat(A), B0], B is a characteristic set of 
[sat(A), B0] w.r.t. R. �
5. Intersection theory for generic difference polynomials

In this section, we will develop an intersection theory for generic difference polynomi-
als, which is a difference analog of [6, Theorem 1.1].

Definition 5.1. Let ms,r be the set of all difference monomials in F{Y} of order ≤ s and 
degree ≤ r (r > 0). Let u = {um}m∈ms,r

be a set of difference indeterminates over F . 
Then,

P =
∑

m∈ms,r

umm

is called a generic difference polynomial of order s and degree r. And the corresponding 
set u is called the coefficient set of P. A generic difference hypersurface is the set of zeros 
of a generic difference polynomial.

Our first goal is to show that by adding a generic difference polynomial to a reflexive 
prime difference ideal, the new ideal is still reflexive prime and its dimension will decrease 
by one. Throughout the paper, a generic difference polynomial is always assumed to be 
of degree greater than zero.

Theorem 5.2. Let I be a reflexive prime difference ideal in F{Y} of dimension d. Let 
P be a generic difference polynomial of order s with coefficient set u. If d > 0, then 
[I, P]F〈u〉{Y} is a reflexive prime difference ideal of dimension d − 1. And if d = 0, then 
[I, P]F〈u〉{Y} = F〈u〉{Y}.
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Proof. Suppose u0 is the degree zero term of P. Denote P̃ = P −u0 and ũ = u\{u0}. Let 
ξ be a generic zero of I over F that is free from u. Let J = [I, P]F〈ũ〉{Y,u0}. It is easy to 
show that (ξ, −P̃(ξ)) is a generic zero of J . Thus, J is a reflexive prime difference ideal 
with dim(J ) = σ.tr.degF〈ũ〉〈ξ, −P̃(ξ)〉/F〈ũ〉 = σ.tr.degF〈ũ〉〈ξ〉/F〈ũ〉 = d. If d = 0, 
then J ∩ F〈ũ〉{u0} �= {0} and [I, P]F〈u〉{Y} = F〈u〉{Y}.

It remains to consider the case d > 0. Without loss of generality, suppose {y1, . . . , yd}
is a parametric set of I. We claim that {y1, . . . , yd−1, u0} is a parametric set of J
over F〈ũ〉. Suppose the contrary. Then ξ1, . . . , ξd−1, −P̃(ξ) are transformally dependent 
over F〈ũ〉. Now specialize the coefficient of yk in P to −1 and all the other u ∈ ũ
to zero, then by Lemma 2.2, ξ1, . . . , ξd are transformally dependent over F , a contra-
diction. So J ∩ F〈ũ〉{y1, . . . , yd−1, u0} = {0}. Thus, [J ]F〈u〉{Y} �= [1] is a reflexive 
prime difference ideal and [I, P] ∩ F〈u〉{y1, . . . , yd−1} = {0}. For each yk (k ≥ d), 
since J ∩F〈ũ〉{y1, . . . , yd−1, yk, u0} �= {0}, [I, P] ∩F〈u〉{y1, . . . , yd−1, yk} �= {0}. Hence, 
[I, P] ⊂ F〈u〉{Y} is a reflexive prime difference ideal of dimension d − 1. �

Next, we consider the order of the intersection of an irreducible difference variety by 
a generic difference hypersurface. Before proving the main result, we need two lemmas.

Lemma 5.3. Let I be a reflexive prime difference ideal in F{u1, . . . , uq, y1, . . . , yp} and

A =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A11, . . . , A1l1

A21, . . . , A2l2

· · ·
Ap1, . . . , Aplp

be a characteristic set of I w.r.t. the elimination ranking u1 ≺ · · · ≺ uq ≺ y1 ≺ · · · ≺ yp
with lvar(Aij) = yi. Suppose f ∈ I is reduced w.r.t. A21, . . . , Aplp . Rewrite f in the 
following form: f =

∑
φ fφ(u1, . . . , uq, y1)φ(y2, . . . , yp), where φ ranges over all distinct 

difference monomials appearing effectively in f and fφ ∈ F{u1, . . . , uq, y1}. Then for 
each φ, fφ(u1, . . . , uq, y1) ∈ I.

Proof. Denote B = A11, . . . , A1l1 . Since f ∈ I is reduced w.r.t. A21, . . . , Aplp , the differ-
ence remainder of f w.r.t. B is zero. Let Bf = B1, . . . , Bs. Then aprem(f, Bf ) = 0. 
Suppose ld(Bi) = y

(o1+i−1)
1 (i = 1, . . . , s). Now we proceed to construct an alge-

braic triangular set C = C1, . . . , Cs contained in I such that 1) ld(Ci) = ld(Bi), 
2) ICi

∈ F{u1, . . . , uq}[y[o1−1]
1 ] and 3) aprem(f, C) = 0. Set C1 = B1. For i = 2, if 

ord(IB2 , y1) = o1 − 1, then set C2 = B2. Otherwise, ord(IB2 , y1) = o1. Let R be the 
Sylvester resultant of IB2 and B1 w.r.t. y(o1)

1 . Since Bf is a regular chain [5, Theo-
rem 4.1], R �= 0 and there exist polynomials D1, D2 such that R = D1B1 + D2IB2 . 
Let C2 = aprem(D2B2, B1). Clearly, C2 ∈ I, ld(C2) = y

(o1+1)
1 and IC2 = R ∈

F{u1, . . . , uq}[y[o1−1]
1 ]. Similarly in this way, C = C1, . . . , Cs can be constructed.
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For each φ, let rφ = aprem(fφ, C). Then there exist integers lφi s.t. 
∏s

i=1(I(Ci))lφifφ ≡
rφ mod (C). Let l = maxφ,i{lφi}. Then 

∑
φ

∏s
i=1(I(Ci))l−lφirφφ(y2, . . . , yp) belongs to I

and is reduced w.r.t. B. Thus, for each φ, rφ = 0 and fφ ∈ I follows. �
Lemma 5.4. Let S be a system of difference polynomials in F{Y}. Suppose V(S) has an 
irreducible component V of dimension d and order h with I(V ) ∩ F{y1} = {0}. Let S
be obtained from S by replacing y(k)

1 by y(k+1)
1 (k = 0, 1, . . .) in all of the polynomials 

in S. Then the variety of S has a component V of dimension d and order h1 such that 
h ≤ h1 ≤ h + 1.

Proof. Let η = (η1, . . . , ηn) be a generic point of V . Since I(V ) ∩ F{y1} = {0}, η1 is 
transformally transcendental over F . So I = [z(1) − η1] ⊂ F〈η〉{z} is a reflexive prime 
difference ideal of dimension 0 and order 1. Let ζ be a generic zero of I. Clearly, 
(ζ, η2, . . . , ηn) is a difference solution of S.

Suppose (ζ, η2, . . . , ηn) lies in a component V of S, which has a generic point 
ξ = (ξ1, . . . , ξn). Then (ξ1, ξ2, . . . , ξn) specializes to (ζ, η2, . . . , ηn), and (ξ(1)

1 , ξ2, . . . , ξn)
specializes to (η1, η2, . . . , ηn) correspondingly. Since (η1, η2, . . . , ηn) is a generic point 
of V and (ξ(1)

1 , ξ2, . . . , ξn) is a zero of S, (ξ(1)
1 , ξ2, . . . , ξn) is a generic point of V . So for 

sufficiently large t ∈ N, tr.degF(ξ(1)
1 , . . . , ξ(t+1)

1 , ξ[t]
2 , . . . , ξ[t]

n )/F = d(t + 1) + h. Since 
tr.degF〈η〉(ζ)/F〈η〉 = 1, tr.degF〈ξ(1)

1 , ξ2, . . . , ξn〉(ξ1)/F〈ξ(1)
1 , ξ2, . . . , ξn〉 = 1. Thus,

ϕV (t) = tr.degF
(
ξ
[t]
1 , . . . , ξ[t]

n

)/
F

= tr.degF
(
ξ
[t+1]
1 , . . . , ξ[t]

n

)/
F − tr.degF

(
ξ[t])(ξ(t+1))/F(ξ[t])

= d(t + 1) + h + 1 − tr.degF
(
ξ[t])(ξ(t+1))/F(ξ[t]).

Consequently, ϕV (t) = d(t + 1) + h1 where h ≤ h1 ≤ h + 1. By Lemma 3.2, the proof is 
completed. �

With the above preparations, we now propose the main theorem in this section.

Theorem 5.5. Let I be a reflexive prime difference ideal in F{Y} of dimension d > 0 and 
order h. Let P be a generic difference polynomial of order s with coefficient set u. Then 
[I, P]F〈u〉{Y} is a reflexive prime difference ideal of dimension d − 1 and order h + s.

Proof. Let I1 = [I, P]F〈u〉{Y}. By Lemma 5.2, I1 is a reflexive prime difference ideal of 
dimension d − 1. We only need to show that the order of I1 is h + s.

Let A be a characteristic set of I w.r.t. some orderly ranking R with y1, . . . , yd as a 
parametric set. By Theorem 3.2, ord(A) = h. Let u0 be the degree zero term of P and 
ũ = u\{u0}. Let J = [I, P]F〈ũ〉{Y,u0}. By the proof of Theorem 5.2, J is a reflexive prime 
difference ideal of dimension d. Clearly, I1 ∩F〈ũ〉{Y, u0} = J . So any characteristic set 
of I1, by clearing denominators in F〈ũ〉{u0} when necessary, is a characteristic set of J
with u0 in the parametric set. By Theorem 3.7, we have ord(I1) ≤ ord(J ).
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We claim that ord(J ) ≤ h +s. As a consequence, ord(I1) ≤ h +s. To prove this claim, 
let J (i) = [I, u(i)

0 + P̃]F〈ũ〉{Y,u0} (i = 0, . . . , s). Similarly to the proof of Theorem 5.2, 
we can show that J (i) is a reflexive prime difference ideal of dimension d. Let F be the 
difference remainder of u(s)

0 + P̃ w.r.t. A under the ranking R. Clearly, ord(F, u0) = s. 
It is obvious that for some orderly ranking, {A, F} is a characteristic set of J (s) with 
y1, . . . , yd as a parametric set. So ord(J (s)) = h + s. Using Lemma 5.4 s times, we have 
ord(J ) ≤ ord(J (1)) ≤ · · · ≤ ord(J (s)) = h + s.

Now, it remains to prove ord(I1) ≥ h + s. Let P = u0 +
∑n

i=1
∑s

j=0 uijy
(j)
i + T , 

where T is the nonlinear part of P. Let w = u0 +
∑d

i=1
∑s

j=0 uijy
(j)
i be a new difference 

indeterminate. Let uG be the set of coefficients of G = w +
∑n

i=d+1
∑s

j=0 uijy
(j)
i + T

regarded as a difference polynomial in w and Y. We denote F1 = F〈uG〉. It is easy to 
show that J1 = [I, G] ⊂ F1{y1, . . . , yn, w} is a reflexive prime difference ideal with a 
generic zero (ξ, − 

∑n
i=d+1

∑s
j=0 uijξ

(j)
i − T (ξ)), where ξ = (ξ1, . . . , ξn) is a generic zero 

of I. So y1, . . . , yd is a parametric set of J1 and ordy1,...,yd
J1 = ordy1,...,yd

I = h. Let

B =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R(y1, . . . , yd, w), R1(y1, . . . , yd, w), . . . , Rl(y1, . . . , yd, w)
B11(y1, . . . , yd, w, yd+1), . . . , B1l1(y1, . . . , yd, w, yd+1)

· · ·
Bn−d,1(y1, . . . , yd, w, . . . , yn), . . . , Bn−d,ln−d

(y1, . . . , yd, w, . . . , yn)

be a characteristic set of J1 w.r.t. the elimination ranking y1 ≺ · · · ≺ yd ≺ w ≺ yd+1 ≺
· · · ≺ yn. Then by Theorem 3.5, ord(B) = ordy1,...,yd

J1 = h.
Let ud = {uij : i = 1, . . . , d; j = 0, . . . , s}. Then [J1] ⊂ F1〈ud〉{w, y1, . . . , yn} is also 

a reflexive prime difference ideal with B as a characteristic set w.r.t. the elimination 
ranking y1 ≺ · · · ≺ yd ≺ w ≺ yd+1 ≺ · · · ≺ yn. Let

φ : F1〈ud〉{y1, . . . , yn, w}→F1〈ud〉{y1, . . . , yn, u0}

w u0 +
d∑

i=1

s∑
j=0

uijy
(j)
i

yi yi

be a difference homomorphism over F1〈ud〉. Clearly, this is a difference isomorphism 
which maps [J1] to J . It is obvious that φ(R), φ(R1), . . . , φ(Rl), φ(B11), . . . , φ(Bn−d,ln−d

)
is a characteristic set of J w.r.t. the elimination ranking y1 ≺ · · · ≺ yd ≺ u0 ≺ yd+1 ≺
· · · ≺ yn and ld(φ(Bij)) = ld(Bij) (i = 1, . . . , n − d; j = 1, . . . , li). We claim that 
ord(φ(R), y1) ≥ ord(R, w) + s. Denote ord(R, w) = o. If ord(R, y1) ≥ o + s, rewrite R in 
the form R =

∑
ψν(w) �=1 pν(y1, . . . , yd)ψν(w) + p(y1, . . . , yd) where ψν(w) are monomials 

in w and its transforms. Then

φ(R) =
∑

pν(y1, . . . , yd)ψν

(
u0 +

d∑ s∑
uijy

(j)
i

)
+ p(y1, . . . , yd)
ψν �=1 i=1 j=0
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=
∑
ψν �=1

pν(y1, . . . , yd)ψν(u0) + p(y1, . . . , yd)

+ terms involving uij (i = 1, . . . , d; j = 0, . . . , s) and their transforms.

Clearly, in this case we have ord(φ(R), y1) ≥ max{ord(pν , y1), ord(p, y1)} = ord(R, y1) ≥
o + s. If ord(R, y1) < o + s, rewrite R as a polynomial in w(o), that is, R =
Il(w(o))l + Il−1(w(o))l−1 + · · ·+ I0. Then φ(R) = φ(Il)[(u(o)

0 +
∑d

i=1
∑s

j=0 u
(o)
ij y

(o+j)
i )]l +

φ(Il−1)[(u(o)
0 +

∑d
i=1

∑s
j=0 u

(o)
ij y

(o+j)
i )]l−1 + · · · + φ(I0). Since ord(φ(Ik), y1) < o + s

(k = 0, . . . , l), we have exactly ord(φ(R), y1) = o + s. Thus, consider the two cases 
together, ord(φ(R), y1) ≥ ord(R, w) + s.

Since J ∩F1〈ud〉{y1, . . . , yd, u0} is a reflexive prime difference ideal of codimension 1, 
by Lemma 3.6, φ(R) can serve as the first difference polynomial in a characteristic set of 
J ∩F1〈ud〉{y1, . . . , yd, u0} w.r.t. any ranking. Suppose φ(R), R̃1, . . . , R̃l̃ is a characteristic 
set of J ∩F1〈ud〉{y1, . . . , yd, u0} w.r.t. the elimination ranking u0 ≺ y2 ≺ · · · ≺ yd ≺ y1. 
By Lemma 5.3, φ(R), R̃1, . . . , R̃l̃, φ(B11), . . . , φ(Bn−d,ln−d

) is a characteristic set of J
w.r.t. the elimination ranking u0 ≺ y2 ≺ · · · ≺ yd ≺ y1 ≺ yd+1 ≺ · · · ≺ yn, thus 
a characteristic set of I1. By Theorem 3.7, ord(I1) ≥ ordy2,...,yd

I1 = ord(φ(R), y1) +∑n−d
i=1 ord(φ(Bi1), yd+i) ≥ ord(R, w) + s +

∑n−d
i=1 ord(Bi1, yd+i) = ord(B) + s = h + s. 

Thus, the order of I1 is h + s. �
As a corollary, we give the dimension theorem for generic difference polynomials.

Theorem 5.6. Let f1, . . . , fr (r ≤ n) be independent generic difference polynomials with 
each fi of order si. Then [f1, . . . , fr] is a reflexive prime difference ideal of dimension 
n − r and order

∑r
i=1 si over F〈uf1 , . . . , ufr〉.

Proof. We will prove the theorem by induction on r. Let I = [0] ⊂ F{Y}. Clearly, I is a 
reflexive prime difference ideal of dimension n and order 0. For r = 1, by Theorem 5.5, 
[f1] = [I, f1] is a reflexive prime difference ideal of dimension n − 1 and order s1. So the 
assertion holds for r = 1. Now suppose the assertion holds for r−1, we now prove it for r. 
By the hypothesis, Ir−1 = [f1, . . . , fr−1] is a reflexive prime difference ideal of dimension 
n − r + 1 and order

∑r−1
i=1 si over F〈uf1 , . . . , ufr−1〉. Since f1, . . . , fr are independent 

generic difference polynomials, using Theorem 5.5 again, Ir = [f1, . . . , fr] is a reflexive 
prime difference ideal of dimension n − r and order

∑r
i=1 si over F〈uf1 , . . . , ufr〉. Thus, 

the theorem is proved. �
Remark 5.7. Notice that Theorem 4.4 is a special case of Theorem 5.5, and the proof of 
Theorem 5.5 gives its alternative proof.

6. The Chow form for an irreducible difference variety

In this section, we will first define the difference Chow form for an irreducible difference 
variety, then give its basic properties.
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6.1. Definition of difference Chow form

Let V be an irreducible difference variety over F of dimension d and I = I(V ) ⊂ F{Y}. 
Let

Pi = ui0 + ui1y1 + · · · + uinyn (i = 0, . . . , d) (2)

be d + 1 generic difference hyperplanes. Denote ui = (ui0, ui1, . . . , uin) for each i =
0, . . . , d and u =

⋃n
i=0 ui\{ui0}.

Lemma 6.1. [I, P0, . . . , Pd]F{u0,...,ud,Y} ∩ F{u0, . . . , ud} is a reflexive prime difference 
ideal of codimension one.

Proof. Let ξ = (ξ1, . . . , ξn) be a generic zero of I which is free from F〈u1, . . . , ud〉. 
Denote ζi = − 

∑n
j=1 uijξj and ζ = (ζ0, u01, . . . , u0n, . . . , ζd, ud1, . . . , udn). We claim that 

(ζ, ξ) is a generic zero of J = [I, P0, . . . , Pd] ⊂ F{u0, . . . , ud, Y}. It is obvious that (ζ, ξ)
is a zero of J . Let g be any nonzero difference polynomial in F{u0, . . . , ud, Y} which 
vanishes at (ζ, ξ). Choose an elimination ranking such that u ≺ Y ≺ u00 ≺ · · · ≺ ud0. 
Then P0, . . . , Pd constitute an ascending chain. Let r = prem(g, P0, . . . , Pd). Then r ∈
F{u, Y} and g ≡ r mod [P0, . . . , Pd]. Clearly, r(u, ξ) = 0. Since u is a set of difference 
indeterminates over F〈ξ〉, r ∈ [I] ⊂ F{u, Y}. Hence, g ∈ J and it follows that (ζ, ξ) is a 
generic zero of J . Thus [I, P0, P1, . . . , Pd] ∩F{u0, . . . , ud} is a reflexive prime difference 
ideal with generic zero ζ.

To show that the codimension of [I, P0, P1, . . . , Pd] ∩ F{u0, . . . , ud} is 1, it suffices 
to show that σ.tr.degF〈u〉〈ζ0, . . . , ζd〉/F〈u〉 = d. Since σ.tr.degF〈ξ〉/F = d and ζi ∈
F〈u, ξ〉, σ.tr.degF〈u〉〈ζ0, . . . , ζd〉/F〈u〉 ≤ σ.tr.degF〈u〉〈ξ〉/F〈u〉 = d. It is trivial for 
the case d = 0. Now we prove it for the case d > 0 by showing that ζ1, . . . , ζd are 
transformally independent over F〈u〉. Suppose the contrary. Without loss of generality, 
assume ξ1, . . . , ξd is a transformal transcendence basis of F〈ξ〉 over F . Now specialize 
uij to −δij (i = 1, . . . , d; j = 1, . . . , n), then by Lemma 2.2, ξ1, . . . , ξd are transformally 
dependent over F , which is a contradiction. Thus σ.tr.degF〈u〉〈ζ0, . . . , ζd〉/F〈u〉 = d

and the lemma follows. �
By Lemma 6.1 and Lemma 3.6, there exists a unique irreducible difference polynomial 

F (u0, . . . , ud) such that [I, P0, . . . , Pd] ∩ F{u0, . . . , ud} is a principal component of F .2
And from the point of view of characteristic sets, if we fix an arbitrary ranking R, 
then there exist F1, . . . , Fl depending on R such that [I, P0, . . . , Pd] ∩ F{u0, . . . , ud} =
sat(F, F1, . . . , Fl).

2 In differential algebra, it is well known that an irreducible differential polynomial has only one general 
component. But in difference case, it is more complicated. In fact, an irreducible difference polynomial F
may have more than one principal components depending on different basic sequences of F , which serve as 
characteristic sets of principal components. For the rigorous definition of basic sequence, please refer to [2].
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Definition 6.2. The above difference polynomial F (u0, . . . , ud) is called the difference 
Chow form of V or the reflexive prime difference ideal I = I(V ), and we call the difference 
ideal [I, P0, . . . , Pd] ∩ F{u0, . . . , ud} the difference Chow ideal of V .

The following example shows that the characteristic set of a Chow ideal could indeed 
contain more than one element.

Example 6.3. Let F = Q(x) and σ(f(x)) = f(x +1) for each f ∈ Q(x). Then I = [y2
1 +1,

y
(1)
1 − y1] is a reflexive prime difference ideal in F{y1}. The difference Chow form of I is 
F (u0) = u2

00 +u2
01 and the difference Chow ideal of I is sat(u2

00 +u2
01, u01u

(1)
00 −u00u

(1)
01 ).

In general, let I = sat(g(y1), g1(y1), . . . , gs(y1)) be a reflexive prime ideal in F{y1}. Let 
F (u0) = M(u01)g(−u00

u01
) and Fi(u0) = Mi(u01)gi(−u00

u01
) where M(u01) and Mi(u01) are 

the minimal difference monomials such that M(u01)g(−u00
u01

), Mi(u01)gi(−u00
u01

) ∈ F{u0}. 
Clearly, they are irreducible. The difference Chow ideal of I is sat(F (u0), F1(u0), . . . ,
Fs(u0)) and the difference Chow form of I is F (u0). Indeed, A = F, F1, . . . , Fs constitute 
an ascending chain in [I, u00 + u01y1] ∩ F{u0} w.r.t. the elimination ranking u01 ≺
u00. And if H is a difference polynomial in [I, u00 + u01y1] ∩ F{u0} which is reduced 
w.r.t. A, then H(−u01y1, u01) is a difference polynomial in [I] ⊂ F〈u01〉{y1} reduced 
w.r.t. g(y1), g1(y1), . . . , gs(y1). Thus, H = 0 and A is a characteristic set of [I, u00 +
u01y1] ∩ F{u0}.

Example 6.4. Let J = [y2
1 +1, y(1)

1 +y1] be a reflexive prime difference ideal in Q(x){y1}. 
By Example 6.3, the difference Chow form of J is F (u0) = u2

00 + u2
01 and the difference 

Chow ideal of I is sat(u2
00 +u2

01, u01u
(1)
00 +u00u

(1)
01 ). Notice that the difference Chow form 

of I = [y2
1 +1, y(1)

1 −y1] is equal to that of J . So different reflexive prime difference ideals 
may have the same difference Chow form, which is quite different from the differential 
case where the correspondence between differential ideals and differential Chow forms is 
one-to-one. Although difference Chow forms cannot be used to distinguish different dif-
ference ideals, the correspondence between reflexive prime difference ideals and difference 
Chow ideals is one-to-one. So difference Chow ideals play an important role here.

Example 6.5. Let I = [y(1)
1 −y1, y2

2−y1, y
(1)
2 +y2] ⊂ Q{y1, y2}. Then I is a reflexive prime 

difference ideal of dimension 0. The difference Chow form of I is F (u0) = u01u02u
(1)
02 u

(1)
00 +

u01u00(u(1)
02 )2+u2

01(u
(1)
00 )2−u01u00u

(1)
01 u

(1)
00 +u2

02u
(1)
01 u

(1)
00 +u00u02u

(1)
01 u

(1)
02 −u01u00u

(1)
01 u

(1)
00 +

u2
00(u

(1)
01 )2 and the difference Chow ideal is sat(F (u0), F1(u0)) with

F1(u0) =

∣∣∣∣∣∣∣
u00 u01 u02

u
(1)
00 u

(1)
01 −u

(1)
02

u
(2)
00 u

(2)
01 u

(2)
02

∣∣∣∣∣∣∣ .
The following lemma shows that the vanishing of the difference Chow form of V gives 

a necessary condition for a system of difference hyperplanes meeting V .
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Theorem 6.6. Let V be an irreducible difference variety over F and F (u0, . . . , ud) its 
difference Chow form. Let Li: ai0+ai1y1+· · ·+ainyn = 0 (i = 0, . . . , d) be d +1 difference 
hyperplanes defined over U and denote αi = (ai0, . . . , ain). If V ∩L1∩· · ·∩Ld �= ∅, then 
the difference Chow ideal of V vanishes at (α0, . . . , αd). In particular, F (α0, . . . , αd) = 0.

Proof. Suppose (ȳ1, . . . , ȳn) ∈ V ∩ L1 ∩ · · · ∩ Ld �= ∅. Then the difference ideal 
[I(V ), P0, . . . , Pd] vanishes at (α0, . . . , αd, ȳ1, . . . , ȳn). Thus, [I(V ), P0, . . . , Pd] ∩ F{u0,

. . . , ud}, in particular F (u0, . . . , ud), vanishes at (α0, . . . , αd). �
Remark 6.7. We remark that the difference characteristic set method proposed in [5]
could be used to compute the difference Chow form of V if we know a set of finitely 
many generating difference polynomials for V .

6.2. The order of difference Chow form

In this section, we will show that the order of the difference Chow form is actually 
equal to that of the corresponding difference variety.

Lemma 6.8. Let F (u0, u1, . . . , ud) be the difference Chow form of an irreducible variety 
V over F . Then the following assertions hold.

1) Suppose Fρτ is obtained from F by interchanging uρ and uτ in F . Then Fρτ and F
differ at most by a sign.

2) ord(F, uij) (i = 0, . . . , d; j = 0, . . . , n) are the same for all uij appearing in F . 
In particular, ui0 appears effectively in F . And ord(F, uij) = −∞ if and only if 
yj ∈ I(V ).

3) Eord(F, uij) = ord(F, uij), for all the i, j.

Proof. 1) Follow the notation in Lemma 6.1. Since u is a set of difference indetermi-
nates over F〈ξ〉, the following difference automorphism φ of F〈ξ〉〈u〉 over F〈ξ〉 can 

be defined: φ(uij) = u∗
ij =

{
uij , i �=ρ,τ
uτj , i=ρ
uρj , i=τ

. Denote f(u, u00, . . . , ud0) = F (u0, . . . , ud), 

then f(u; ζ0, . . . , ζρ, . . . , ζτ , . . . , ζd) = 0. So φ(f(u; ζ0, . . . , ζd)) = f(u∗; ζ0, . . . , ζτ , . . . ,
ζρ, . . . , ζd) = 0. Let Fρτ (u0, . . . , ud) = f(u∗; u00, . . . , uτ0, . . . , uρ0, . . . , ud0), then 
Fρτ (u; ζ0, . . . , ζd) = 0. Thus, Fρτ ∈ I(ζ) = sat(F, . . .). Since ord(Fρτ ) = ord(F ), 
deg(Fρτ ) = deg(F ) and Fρτ has the same content as F , then Fρτ = ±F .

2) By Lemma 6.1 and 1), we obtain that each ui0 appears effectively in F with the same 
order. Suppose ord(F, ui0) = s. For j �= 0, we consider ord(F, uij). If ord(F, uij) = l > s, 
then we differentiate f(u; ζ0, . . . , ζd) = 0 w.r.t. u(l)

ij and we get ∂f

∂u
(l)
ij

(u; ζ0, . . . , ζd) = 0, 

a contradiction. If ord(F, uij) = l < s, differentiate f(u; ζ0, . . . , ζd) = 0 w.r.t. u(s)
ij , then 

∂f
(s) (u, ζ0, . . . , ζd)(−ξj) = 0. Since ∂f

(s) (u, ζ0, . . . , ζd) �= 0, ξj = 0. And yj ∈ I(V ) ⇔

∂ui0 ∂ui0
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ξj = 0 ⇔ ζi is free of uij ⇔ F is free from uij , thus ord(f, uij) = s for all uij appearing 
in F .

3) Suppose Lord(F, ui0) = t. Similarly, we can prove that Lord(F, uij) (i = 0, . . . , d; 
j = 1, . . . , n) are the same for all uij appearing in F . Set G = σ(−t)(F ), since sat(F, . . .)
is a reflexive prime difference ideal, G ∈ sat(F, . . .). Since ord(F ) = ord(G) + t, t = 0. 
Hence ord(F, uij) = Eord(F, uij). �
Definition 6.9. The order of the difference Chow form is defined to be ord(F ) =
ord(F, ui0) for any i ∈ {0, . . . , d}.

The following result shows that the difference characteristic set of [I, P0, . . . , Pd] can 
be easily computed if the difference characteristic set of the difference Chow ideal is 
given.

Lemma 6.10. Let F (u0, . . . , ud) be the difference Chow form of a reflexive prime dif-
ference ideal I and F, F1, . . . , Fl a characteristic set of the difference Chow ideal w.r.t. 
some ranking R endowed on 

⋃d
i=0 ui. Then

A =
{
F, F1, . . . , Fl,

∂F

∂u00
y1 −

∂F

∂u01
, . . . ,

∂F

∂u00
yn − ∂F

∂u0n

}

is a characteristic set3 of [I, P0, . . . , Pd] ⊂ F{u0, . . . , ud, Y} w.r.t. the elimination rank-
ing uij ≺ y1 ≺ · · · ≺ yn which is consistent with R.

Proof. Denote Iζ,ξ = [I, P0, . . . , Pd] ⊂ F{u0, . . . , ud, Y}. For each ρ = 1, . . . , n, 
differentiate F (u; ζ0, . . . , ζd) = 0 w.r.t. u0ρ, then ∂F

∂u0ρ
|(u00,...,ud0)=(ζ0,...,ζd) −

ξρ
∂F
∂u00

|(u00,...,ud0)=(ζ0,...,ζd) = 0. Hence, ∂F
∂u00

yρ − ∂F
∂u0ρ

∈ Iζ,ξ (ρ = 1, . . . , n). Let f be 
any difference polynomial in Iζ,ξ. Suppose g is the difference remainder of f w.r.t. 
∂F
∂u00

yρ − ∂F
∂u0ρ

(ρ = 1, . . . , n) w.r.t. the elimination ranking uij ≺ y1 ≺ · · · ≺ yn, then 
g ∈ Iζ,ξ ∩ F{u0, . . . , ud}. Thus, prem(f, A) = prem(g, [F, F1, . . . , Fl]) = 0. Therefore A
is a characteristic set of Iζ,ξ w.r.t. the elimination ranking uij ≺ y1 ≺ · · · ≺ yn which is 
consistent with R. �

The following result shows that the generic point (ξ1, . . . , ξn) of V can be recovered 
from its difference Chow ideal.

Corollary 6.11. Let F (u0, . . . , ud) be the difference Chow form of V . Suppose ζ is a 
generic zero of the difference Chow ideal of V and denote

3 Here A is a triangular set but may not be an ascending chain. Note that the difference remainder of 
∂F
∂u is not zero, so A can also serve as a characteristic set, which is just similar to the differential case.
00
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ηρ = ∂F

∂u0ρ

/
∂F

∂u00
(ρ = 1, . . . , n)

where ∂F
∂u0ρ

= ∂f
∂u0ρ

|(u0,...,ud)=ζ . Then (η1, . . . , ηn) is a generic point of V .

Proof. It follows directly from Lemma 6.10. �
Corollary 6.12. Let V be an irreducible difference variety of dimension d over F . De-
note u =

⋃d
i=0 ui\{ui0}. Then over F〈u〉, V is birationally equivalent to an irreducible 

difference variety of codimension 1.

Proof. Suppose F (u0, . . . , ud) is the difference Chow form of V and CI ⊂ F{u;
u00, . . . , ud0} is the difference Chow ideal of V . Let CIu = [CI] ⊂ F〈u〉{u00, . . . , ud0}
and W = V(CIu) ⊂ U n. By Lemma 3.3, W is an irreducible difference variety of codi-
mension 1. Then over F〈u〉, V is birationally equivalent to W with the following maps:

φ : V → W

(a1, . . . , an)
(
−

n∑
k=0

u0kak, . . . ,−
n∑

k=0

udkak

)

and

ψ : W → V

(b00, . . . , bd0)
(

∂F

∂u01

/
∂F

∂u00
, . . . ,

∂F

∂u0n

/
∂F

∂u00

)
,

where ∂F
∂u0k

= ∂F
∂u0k

(u; b00, . . . , bd0). �
The following result gives our first main property for difference Chow form.

Theorem 6.13. Let I be a reflexive prime difference ideal of dimension d with difference 
Chow form F (u0, . . . , ud). Then ord(F ) = ord(I).

Proof. Let Id = [I, P1, . . . , Pd] ⊂ F〈u1, . . . , ud〉{Y}. By Theorem 3.5 Id is a reflexive 
prime difference ideal with dim(Id) = 0 and ord(Id) = ord(I).

Let J = [I, P0, . . . , Pd] = [Id, P0] ⊂ F〈u1, . . . , ud; u01, . . . , u0n〉{u00, Y}. Choose a 
ranking R such that u00 is the leading variable of F . By Lemma 6.10, A is a characteristic 
set of Iξ,ζ . Since {u1, . . . , ud, u00, . . . , u0n} is a parametric set of Iξ,ζ , by Lemma 3.3, A is 
also a characteristic set of J w.r.t. some ranking. Since dim(J ) = 0, ord(J ) = ord(A) =
ord(F ).

Let η = (η1, . . . , ηn) be a generic zero of Id. Set θ = − 
∑n

j=1 u0jηj , then (θ, η1, . . . , ηn)
is a generic zero of J . Since dim(J ) = 0, for sufficiently large integer t,
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ord(J ) = ϕJ (t)

= tr.degF〈u1, . . . ,ud, u01, . . . , u0n〉
(
θ[t], η

[t]
1 , . . . , η[t]

n

)
/
F〈u1, . . . ,ud, u01, . . . , u0n〉

= tr.degF〈u1, . . . ,ud, u01, . . . , u0n〉
(
η
[t]
1 , . . . , η[t]

n

)/
F〈u1, . . . ,ud, u01, . . . , u0n〉

= tr.degF〈u1, . . . ,ud〉
(
η
[t]
1 , . . . , η[t]

n

)/
F〈u1, . . . ,ud〉

= ϕId
(t) = ord(Id).

Hence ord(F ) = ord(J ) = ord(Id) = ord(I). �
6.3. Homogeneity of the difference Chow form

In this section, we will show that the difference Chow form is transformally homoge-
neous.

Definition 6.14. A difference polynomial p ∈ F{y0, . . . , yn} is said to be transformally ho-
mogeneous if for a new difference indeterminate λ, p(λy0, . . . , λyn) = M(λ)p(y0, . . . , yn), 
where M(λ) is a difference monomial of λ.

The difference analog of Euler’s theorem related to homogeneous polynomials is valid.

Lemma 6.15. (See [15].) A difference polynomial p ∈ F{y0, . . . , yn} is transformally 
homogeneous if and only if for each k ≥ 0, there exists rk ∈ N0 such that

n∑
j=0

y
(k)
j

∂p

∂y
(k)
j

= rkp.

Theorem 6.16. Let F (u0, u1, . . . , ud) be the difference Chow form of a difference irre-
ducible variety V of dimension d and order h. Then

1)
∑n

j=0 u
(k)
τj

∂F

∂u
(k)
σj

=
{

0 if σ=τ
rkF if σ �=τ for k = 0, 1, . . . , h, where rk ∈ N0.

2) F (u0, . . . ,ud) is transformally homogeneous in each ui.

Proof. Differentiate F (u; ζ0, ζ1, . . . , ζd) = 0 on both sides w.r.t. u(k)
σj (k = 0, . . . , h), then

∂F

∂u
(k) + ∂F

∂u
(k)

(
−ξ

(k)
j

)
= 0,
σj σ0
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where ∂F

∂u
(k)
σj

= ∂F

∂u
(k)
σj

|(u00,...,ud0)=(ζ0,...,ζd). Multiply the above equation by u(k)
τj and for j

from 1 to n, add them together, then we get

n∑
j=1

u
(k)
τj

∂F

∂u
(k)
σj

+ ζ(k)
τ

∂F

∂u
(k)
σ0

= 0.

Hence, the difference polynomial Gστ =
∑n

j=0 u
(k)
τj

∂F

∂u
(k)
σj

∈ Iζ,ξ. Since ord(Gστ ) ≤ h, 

F divides Gστ . If τ �= σ, deg(Gστ , u(k)
σ ) < deg(F, u(k)

σ ), thus Gστ = 0. In the case 
τ = σ, there exists rk ∈ N0 such that 

∑n
j=0 u

(k)
σj

∂F

∂u
(k)
σj

= rkF for k = 0, 1, . . . , h. And by 

Lemma 6.15, F (u0, u1, . . . ,ud) is transformally homogeneous in each ui. �
Definition 6.17. Let V be an irreducible difference variety of dimension d and order h. Let 
F (u0, . . . , ud) be the difference Chow form of V . The difference degree of V is defined 
as the homogeneous degree r =

∑h
k=0 rk of its difference Chow form in each ui (i =

0, . . . , d).

The following result shows that the difference degree of a variety V is an invariant of 
V under invertible linear transformations.

Lemma 6.18. Let A = (aij) be an n × n invertible matrix with aij ∈ F and 
F (u0, u1, . . . , ud) the Chow form of an irreducible difference variety V of dimension d. 
Then the difference Chow form of the image variety of V under the linear transformation 
Y = AX is FA(v0, . . . , vd) = F (v0B, . . . , vdB), where B =

(
1 01×n

0n×1 A

)
and ui and vi

are regarded as row vectors.

Proof. Let ξ = (ξ1, . . . , ξn) be a generic point of V . Under the linear transformation 
Y = AX, V is mapped to an irreducible difference variety V A whose generic point is 
η = (η1, . . . , ηn) with ηi =

∑n
j=1 aijξj . Denote F (u0, . . . , ud) = f(uij ; u00, . . . , ud). Note 

that FA(v0, . . . , vd) = f(
∑n

k=1 vikakj ; v00, . . . , vd0) and f(
∑n

k=1 vikakj ; − 
∑n

k=1 v0kηk,

. . . , − 
∑n

k=1 vdkηk) = f(
∑n

k=1 vikakj ; − 
∑n

j=1(
∑n

k=1 v0kakj)ξj , . . . , − 
∑n

j=1(
∑n

k=1 vdk ×
akj)ξj) = 0. Since V A is of the same dimension and order as V and FA is irreducible, 
by the definition of difference Chow form, the proof is completed. �
Definition 6.19. Let p be a difference polynomial in F{y}. Suppose ord(p, y) = t and 
mi = deg(p, y(i)) (i = 0, . . . , t). Then 

∏t
i=0(y(i))di is called the difference denomination

of p, denoted by denσ(p).

Example 6.20. Consider the case n = 1. Suppose I = sat(g(y), g1(y), . . . , gs(y)) be a 
reflexive prime difference ideal in F{Y}. Let denσ(g) = M(y). Clearly, M(u01) is the 
minimal difference monomial such that M(u01)g(−u00

u01
) ∈ F{u0} where u0 = (u00, u01). 

By Example 6.3, F (u0) = M(u01)g(−u00 ) is the difference Chow form of I. Thus, the 
u01
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difference degree of I is equal to the degree of the difference denomination of g, i.e. ∑ord(g)
i=0 deg(g, y(i)). Recall that in the differential case, the differential degree of sat(g) is 

also equal to the denomination of g. But the denomination of a differential polynomial 
is much more complicated to compute than the difference case. There, we showed that 
the weighted degree of g is a sharp bound for the differential degree of sat(g).

7. Conclusion

In this paper, firstly, it is shown that both the dimension and the order of a reflexive 
prime difference ideal can be read off from its characteristic sets under any fixed rank-
ing. Then we give a generic intersection theorem for difference varieties. Precisely, the 
intersection of an irreducible difference variety of dimension d > 0 and order h with a 
generic difference hypersurface of order s is shown to be an irreducible difference variety 
of dimension d −1 and order h +s. Based on the intersection theory, the difference Chow 
form for an irreducible difference variety is defined and its basic properties are given.

Below, we propose several problems for further study.
In the differential case, much more properties are proved for the differential Chow 

form [6], which are not yet able to be generalized to the difference case due to the 
distinct structures of the differential and difference operators. It is interesting to enrich 
the properties of difference Chow form, especially to establish a theory of difference Chow 
variety.

In Remark 6.7, we mentioned that the difference Chow form can be computed with 
the difference characteristic set method. But it is difficult to analyze the computing 
complexity if we just work with the usual characteristic set method. In the algebraic 
case, Jeronimo et al. gave a bounded probabilistic algorithm to compute the Chow form, 
whose complexity is polynomial in the size and the geometric degree of the input equation 
system [10]. It is important to apply the principles behind such algorithms to propose 
an efficient algorithm to compute the difference Chow form.

In Theorem 3.5, we proved that both the dimension and the relative order of a reflexive 
prime difference ideal can be reflected from its characteristic set under an arbitrary 
ranking. We conjecture that the relative effective order can also be read off.
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